Login to your account

Username
Password *
Remember Me

porifera.net lab

@ Friedrich-Schiller-Universität Jena, Germany

Oberflächenwunder mit modernem Skelett

Neue 3D-Einblicke in Stuttgarter Wilhelma-Schwamm Tethya

 

Die erste im Stuttgarter Zoologisch-Botanischen Garten Wilhelma entdeckte und nach ihm benannte Tierart, der Schwamm Tethya wilhelma, sorgt weiter für wissenschaftliche Schlagzeilen. In zwei Veröffentlichungen in der aktuellen Ausgabe der Fachzeitschrift Zoomorphology* stellt der Zoologe Dr. Michael Nickel vom Biologischen Institut der Universität Stuttgart gemeinsam mit Dr. Felix Beckmann (Hamburg) und Dr. Eric Bullinger (Irland) die neuesten Forschungsergebnisse rund um die kleinen weißen Kugelschwämmchen vor. Zum ersten Mal gelang es, mit Hilfe von elektromagnetischen Wellen (Synchrotronstrahlung) die dreidimensionale Körperstruktur eines kompletten Schwammes aufzunehmen und in einem virtuellen Modell darzustellen. Die Daten erlauben einen detaillierten Einblick in das komplexe Innenleben dieses Vertreters der über 600 Millionen Jahre alten Tiergruppe der Schwämme. In einem virtuellen Flug durch das Kanalsystem des Schwammes konnten neue Erkenntnisse über dessen strukturelle Konzeption gewonnen werden. Neben beeindruckenden Visualisierungen erlauben die virtuellen Daten erstmals die Vermessung des extrem verzweigen Wasserleitungssystems.

 

Dabei zeigte sich, dass der kleine Schwamm ein wahres Oberflächenwunder ist: „Bezogen auf das Volumen besitzt Tethya wilhelma sechsmal so viel Oberfläche wie die menschliche Lunge“, erklärt Michael Nickel. Bisher wurden die Dimensionen der Oberflächen-zu-Volumen-Verhältnisse aufgrund fehlender Messmöglichkeiten stark unterschätzt. Auch das Skelett der Tethya-Schwämme barg Überraschungen. So bilden über 16.000 winzige, sternförmige Mineralpartikel eine regelrechte Sphäre auf halbem Weg zwischen Außenseite und Zentrum des kugeligen Schwammes. „Das Besondere an dieser Struktur sind die Materialeigenschaften“, erläutert Michael Nickel. Die Silikatpartikel sind in eine dicke Schicht von Kollagen eingelagert. Gleich einem Komposit-Werkstoff aus einer elastischen Matrix (Kollagen) und eingelagerten Füllerpartikeln (Silikat-Sterne) ist diese Sphäre in der Lage, hohe physikalische Belastungen dynamisch abzupuffern. Ein ähnliches Prinzip findet man bei Autoreifen. Auch in der Medizin könnten ähnliche Komposit-Werkstoffe zum Einsatz kommen, etwa in Form von gewebeverträglichen Implantaten. „Es handelt sich im Prinzip um einen Werkstoff, wie er moderner nicht sein könnte“, resümiert Nickel.

 

Schnellster Schwamm der Welt

 

Solche von der bionischen Forschung inspirierten Anwendungen sind jedoch Zukunftsmusik. Einstweilen helfen die neuen Daten aus dem Synchrotron-Mikrotomographen den Wissenschaftlern, ihre Modellorganismen besser zu verstehen. Insbesondere für das Verständnis des eigentümlichen Bewegungsverhaltens von Tethya wilhelma, der als „schnellster Schwamm der Welt“ gilt, sind die aktuellen Stuttgarter Forschungsarbeiten von Bedeutung: Die riesigen kontraktionsfähigen Oberflächen im Schwamm ermöglichen ein extremes Zusammenziehen des Körpers. „Und das ohne Muskelzellen“, wie Nickel betont. Die räumliche Anordnung der Skelettelemente sorgt dabei während der Kontraktion für eine Verteilung der auf das Gewebe wirkenden Zugkräfte. Dadurch werden der im Zentrum liegende lebenswichtige Filtrationsapparat des Schwammes vor übermäßiger Verformung oder gar dem Kollaps bewahrt.

 

Für Michael Nickel ist die Forschung an Tethya wilhelma und seinen Verwandten noch längst nicht ausgereizt. Aus der Mischung von Grundlagenforschung und anwendungsorientierter Forschung erwarten die Wissenschaftler neue Ideen für biomedizinische und ingenieurwissenschaftliche Materialien. Neben Komposit-Werkstoffen sind in dieser Hinsicht vor allem auch Unterwasser-Haftstrukturen an Körperausläufern, die der Schwamm ausbildet, von Interesse. In interdisziplinären Kooperationen mit Ingenieuren, Molekular- und Systembiologen soll Tethya wilhelma deshalb auch zukünftig im Mittelpunkt stehen.

 

Weitere Informationen bei Dr. Michael Nickel, Biologisches Institut der Universität Stuttgart, Tel. 0711/685-65084, e-Mail: This email address is being protected from spambots. You need JavaScript enabled to view it., Anfragen vom 14.11. – 4.12.2006 wegen einer Auslandsdienstreise von M. Nickel bitte zunächst per e-Mail.

AKTUELLE KONTAKTDATEN HIER

 

* Die Beiträge erschienen in der Zeitschrift Zoomorphology, Volume 125, Heft 4, November 2006: S. 209-223 (http://dx.doi.org/10.1007/s00435-006-0021-1) und S. 225-239 (http://dx.doi.org/10.1007/s00435-006-0022-0)

 

Bild- und Filmmaterial: www.porifera.net/presse

SpongeTube

SpongeTet-180